Measurement of the G Double-Polarisation Observable in Pion Photoproduction

Eugene Pasyuk
Thomas Jefferson National Accelerator Facility

on behalf of Josephine McAndrew University of Edinburgh

And on behalf of the CLAS Collaboration

Introduction

- Background and motivation
- Experimental setup
- Analysis procedure: channel selection and observable extraction
- Preliminary Results
- Comments and Conclusions

Physics Motivation

- Recent advances in Lattice QCD calculations are closer to predicting nucleon excited states
- Calculations still not performed at realistic quark masses
- Most predictions of nucleon excited states still rely on phenomenological models
- These models predict resonances not yet observed
- Many properties of "known" resonances remain poorly established

Di-Quark Model

Quark and Flux-Tube Models

Polarisation Observables

Photon	Target				Recoil			Target + Recoil				
	-	-	-	1-0	x'	y'	z'	x'	x'	z'	z'	
	-	\boldsymbol{x}	y	z	-	_	_	\boldsymbol{x}	z	\boldsymbol{x}	z	
unpolarized	σ_0	0	T	0	0	P	0	$T_{x'}$	${}^{\scriptscriptstyle -}\mathrm{L}_x{}_{\prime}$	$T_{z'}$	$L_{z'}$	
linear pol.	$-\Sigma$	H	(-P)	-G	$O_{x'}$	(-T)	$O_{z'}$	$(\text{-L}_{z'})$	$(\mathrm{T}_{z'})$	$(\text{-L}_{x'})$	$({}^{\scriptscriptstyle{-}}\mathrm{T}_{x'})$	
circular pol.	0	F	0	-E	$-C_{x'}$	0	$-C_{z'}$	0	0	0	0	

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega_{unpol}} \{ (1 - p_T \Sigma \cos(2\phi) + p_X \left[-p_T H \sin(2\phi) + p_0 F \right] - p_Y \left[T + p_T \cos(2\phi) \right] - p_Z \left[-P_T G \sin(2\phi) + p_0 E \right] \}$$

Polarisation Observables

Photon	Target				Recoil			Target + Recoil				
	-	-	-	-	x'	y'	z'	x'	x'	z'	z'	
	_	\boldsymbol{x}	y	z	-	_	_	\boldsymbol{x}	z	\boldsymbol{x}	z	
unpolarized	σ_0	0	T	0	0	P	0	$T_{x'}$	${}^{\scriptscriptstyle -}\mathrm{L}_x{}_{\prime}$	$T_{z'}$	$L_{z'}$	
linear pol.	$-\Sigma$	H	(-P)	-G	$O_{x'}$	(-T)	$O_{z'}$	$(\text{-L}_{z'})$	$(\mathrm{T}_{z'})$	$(\text{-L}_{x'})$	$(-T_{x'})$	
circular pol.	0	F	0	-E	$-C_{x'}$	0	$-C_{z'}$	0	0	0	0	

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega_{unpol}} \{ (1 - p_T \Sigma \cos(2\phi)) - p_X \left[-p_T H \sin(2\phi) + p_0 F \right]$$
$$-p_Y \left[T + p_T \cos(2\phi) \right] - (p_Z \left[-P_T G \sin(2\phi) + p_0 E \right] \}$$

Previous Measurements of the G Observable

- First measurement of G from from 600-1875 MeV for the $n\pi^+$ channel by Bussey et al., Nucl. Phys. B**169** (1980) 403-414
- Two data points for $n\pi^+$ channel at 350 MeV measured by Belyaev et al., Sov.J. Nucl. Phys. **40** 83-86 (1984)
- Six data points measured by Ahrens *et al.* (2005) for the $n\pi^+$ channel and three for the $p\pi^0$ channel at 340 +/- 10 MeV

Current data-set for the G 5/22 Observable (low energies)

J. Ahrens *et al, Eur. Phys. J. A* **26** 135-140 (2005)

Experimental Facility

CLAS

www.jlab.org

www.jlab.org

The CLAS Detector

Summary of Experimental Setup for g9a

- Experiment performed from October 2007 February 2008 in Hall B at JLab.
- Used lineary and circularly polarised photon beams in the energy range 730-2300 MeV.
- Beam polarisation up to ~80%.
- First experiment with the frozen spin target, FROST.
- Longitudinal target polarisation ~80% to ~90%.
- The G observable requires a linearly polarised photon beam and longitudinally polarised target.

Analysis Procedure

- Reaction studied: $y(p,n)\pi^+$
- Analyse data for polarised butanol and unpolarised carbon and CH₂ targets in the beamline:

• Channel ID: select π^+ events and reconstruct missing mass of the neutron.

Identifying π⁺ **Events**

• Make rough mass cut on π^+ mass squared (0-0.4 GeV):

• Timing cuts: find photon responsible for each π^+ event.

Identifying π^{\dagger} events, continued...

- Correct for π^+ energy loss after photon energy and timing cuts.
- Make better π^+ mass cut using $\Delta\beta$ technique:

Reconstruction of Missing Mass (Neutron Mass)

Use missing mass technique:

$$y + p \rightarrow \pi^+ + X$$

Neutron Mass Cut

 Butanol is C₄H₉OH, so use carbon target data to assess carbon and oxygen background:

 Can also fit to the missing mass peak in carbon to assess carbon background in butanol:

Asymmetry Production

• Plot π^+ azimuthal distribution for each of three beam settings:

PARA beam setting

PERP beam setting

Unpolarised beam setting

 Use these histograms to produce an asymmetry for each target setting:

$$rac{N_{||}-N_{\perp}}{N_{||}+N_{\perp}}$$

G Observable Extraction

Create an asymmetry and fit a function to obtain G:

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega_{unpol}} \{ (1 - p_T \Sigma \cos(2\phi) - p_Z \left[-P_T G \sin(2\phi) \right] \}$$

Asymmetry -ve polarised target

Asymmetry +ve polarised target

G Observable Extraction

Create an asymmetry and fit a function to obtain G:

$$f(\phi)_{||\perp} = P0 + P1\cos(2(\phi - P2)) + P3\sin(2(\phi - P2))$$
p3 = p.p.fG

Asymmetry -ve polarised target

Asymmetry +ve polarised target

Calculating the Dilution Factor f

 This takes into account the ratio of unpolarisable to polarisable protons in butanol:

$$f = \frac{N_B - N_C}{N_B} = \frac{N_H}{N_B}$$

• Dilution factor found to be between 0.5 and 0.74 (dependent on photon energy and polar angle, θ) and with ~5%-10% error.

Cross-Checking Results: G Observable

• First step is to check that asymmetries obtained from both target settings (polarised parallel or anti-parallel to the beam direction) are the same:

Cross-Checking Results: Σ Observable

• From fits to butanol asymmetries can also extract Σ :

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega_{unpol}} \{ (1 - (p_T \Sigma \cos(2\phi) - p_Z [-P_T G \sin(2\phi)]) \}$$

• As CH₂ target unpolarised, asymmetries of the form:

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega_{unpol}} \{ (1 - p_T \Sigma \cos(2\phi)) \}$$

 \bullet Compare values of Σ obtained for both targets and for both target settings

Cross-Checking Results: Σ Observable

 Consistent values of Σ obtained for both targets and for both target settings:

Preliminary Results for G

- g9a data in the energy range 730 – 2300 MeV for fixed angular bins
- Plots shown for nπ⁺ channel

Comments about Results

- Preliminary values of G have been extracted for the $\gamma(p,n)\pi^+$ channel in the energy range 730-2300 MeV.
- Most comprehensive measurement of G in the 730-2300 MeV energy region to date.
- Some refinement of particle ID cuts and calculation of dilution factor required.

With thanks to the FROST group:

Back-up slides

Calculation of Flux Ratio

- Normalise PARA and PERP φ-distributions by dividing through by AMO distribution
- Fit to calculate flux relative to AMO for PARA and PERP data
- Obtain flux ratio for PARA and PERP data sets

$$N(\phi)_{||\perp} = A(\phi)F_{||\perp}(1 \pm p_{||\perp}\Sigma\cos(2(\phi - \phi_0)) \pm p_{||\perp}p_zG\sin(2(\phi - \phi_0)))$$

$$N(\phi)_{AMO} = A(\phi)F_{AMO}$$

Calculation of Flux Ratio

- Normalise PARA and PERP φ-distributions by dividing through by AMO distribution
- Fit to calculate flux relative to AMO for PARA and PERP data
- Obtain flux ratio for PARA and PERP data sets

$$f(\phi)_{||\perp} = P0(1 \pm P1\cos(2(\phi - P2)) \pm P3\sin(2(\phi - P2)))$$

Calculation of φ₀ Offset

- · Aim to assess offset of PARA and PERP beam settings
- · Extract parameter from fit to normalised π^+ azimuthal distributions (data from unpolarised CH $_2$) target

$$N(\phi)_{||\perp} = A(\phi)F_{||\perp}(1 \pm p_{||\perp}\Sigma\cos(2(\phi - \phi_0)))$$

Calculation of ϕ_0 Offset

- · Aim to assess offset of PARA and PERP beam settings
- · Extract parameter from fit to normalised π⁺ azimuthal distributions (data from unpolarised CH₂) target

$$f(\phi)_{||\perp} = P0(1 \pm P1\cos(2(\phi - P2)))$$

Calculating the scale factor

- Divide butanol missing mass plot by carbon missing mass plot
- Fit to the flat region to the left of the missing mass peaks

